Nächste Seite: Danksagung
Aufwärts: diplom
Vorherige Seite: Erweiterung des
Poincaré-Schnitts auf Inhalt
- 1
- Volker Ahlers: Nichtlineare Dynamik und Synchronisation chaotischer
Halbleiterlaser mit externen optischen Resonatoren. Diplomarbeit, Drittes
Physikalisches Institut, Göttingen, 1998.
- 2
- I. Akhatov, R. Mettin, C. D. Ohl, U. Parlitz und
W. Lauterborn: Bjerknes force threshold for stable single bubble
sonoluminescence. Phys. Rev. E 55, 3747-3750, 1997.
- 3
- I. Akhatov, U. Parlitz und W. Lauterborn: Pattern formation in
acoustic cavitation. J. Acoust. Soc. Am. 96, 3627-3635, 1994.
- 4
- C. T. H. Baker, C. A. H. Paul und D. R. Willé:
Issues in the numerical solution of evolutionary delay differential equations.
Techn. Ber. 248, University of Manchester/UMIST, Manchester Centre for
Computational Mathematics, April 1994.
- 5
- B. P. Barber, R. A. Hiller, R. Löfstedt, S. J.
Putterman und K. R. Weninger: Defining the unknowns of sonoluminescence.
Physics Reports 281, 64-143, 1997.
- 6
- R. E. Bellman, J. D. Buell und R. E. Kalaba: Numerical
integration of a differential-difference equation with a decreasing time-lag.
Comms. ACM 8, 227-228, 1965.
- 7
- R. E. Bellman, J. D. Buell und R. E. Kalaba: Mathematical
experimentation in time-lag modulation. Comms. ACM 9, 752-753,
1966.
- 8
- I. N. Bronstein und K. A. Semendjajw: Taschenbuch der
Mathematik. B. G. Teubner Verlagsgesellschaft Stuttgart, Leipzig, 25.
Aufl., 1991.
- 9
- L. A. Crum: Bjerknes forces on bubbles in a stationary sound field. J.
Acoust. Soc. Am. 57(6), 1363-1370, 1975.
- 10
- A. A. Doinikov und S. T. Zavtrak: On the mututal interaction of two
gas bubbles in a sound field. Phys. Fluids 7(8), 1923-1930,
1995.
- 11
- S. Fujikawa und H. Takahira: A theoretical study on the interaction
between two spherical bubbles and radiated pressure waves in a liquid.
Acustica 61, 188-199, 1986.
- 12
- K. Gopalsamy: Stability and oscillations in delay differential
equations of population dynamics. Kluwer, 1992.
- 13
- J. Guckenheimer und P. Holmes: Nonlinear oscillations, dynamical
systems, and bifurcations of vector fields. Springer-Verlag, New York,
1986.
- 14
- J. K. Hale und S. M. V. Lunel: Introduction to Functional
Differential Equations, Bd. 99 von Applied Mathematical Sciences.
Springer-Verlag, New York, Berlin, Heidelberg, 1993.
- 15
- Z. Hong, Z. Feizhou, Y. Jie und W. Yinghai: Nonlinear
differential delay equations using the poincare section technique. Phys. Rev.
E 54(6), 6925-6928, 1996.
- 16
- A. E. Jackson: Perspectives of Nonlinear Dynamics. Cambridge UP,
1991.
- 17
- V. F. Kazantsev: The motion of gaseous bubbles in a liquid under the
influence of Bjerknes forces arising in an acoustic field. Sov. Phys.
Doklady 4(1), 1250-1253, [Original: Doklady Akad. Nauk SSSR, 129,
64-67, (1959)], 1960.
- 18
- J. B. Keller und M. Miksis: Bubble oscillations of large amplitude.
J. Acoust. Soc. Am 68(2), 628-633, 1980.
- 19
- W. Lauterborn: Numerical investigation of nonlinear oscillations of gas
bubbles in liquids. J. Acoust. Soc. Am 59, 283-293, 1976.
- 20
- W. Lauterborn: Akustische Kavitation: ein typisches, nichtlineares
dynamisches System. Acustica 75, 145-153, 1991.
- 21
- W. Lauterborn und R. Mettin: Nonlinear bubble dynamics. In:
Proceedings of the NATO Advanced Study Institute, Leavenworth (WA),
herausgegeben von L. A. Crum, S. 18-29, Kluwer Academic Publishers, Dordrecht,
1997.
- 22
- T. G. Leighton: The Acoustic Bubble. Academic Press, London,
1994.
- 23
- G. C. Lichtenberg: Novi Commentari Societatis Regiae Scientiarum
Gottingensis, Kap. De nova methodo naturam ac motum fluidi electrici
investigandi, S. 168-180. Commentationes physicae et mathematicae classis, Joann.
Christian Dieterich, Gottingae, VIII Aufl., 1778.
- 24
- J. Losson, M. C. Mackey und A. Longtin: Solution multistability
in first-order nonlinear differential delay equations. Chaos 3(2),
167-176, 1993.
- 25
- R. Mettin, I. Akhatov, U. Parlitz, C. D. Ohl und
W. Lauterborn: Bjerknes forces between small cavitation bubbles in a strong
acoustic field. Phys. Rev. E 56, 2924, 1997.
- 26
- M. Minnaert: On musical air-bubbles and the sound of running water.
Phil. Mag. 16, 235-248, 1933.
- 27
- H. J. Oberle und H. J. Pesch: Numerical treatment of delay
differential equations by Hermite interpolation. Numer. Math. 37,
235-255, 1981.
- 28
- H. N. Oguz und A. Prosperetti: A generalization of the impulse and
virial theorems with an application to bubble oscillations. J. Fliud. Mech.
218, 143-162, 1990.
- 29
- U. Parlitz, V. Englisch, C. Scheffczyk und W. Lauterborn:
Bifurcation structure of bubble oscillations. J. Acoust. Soc. Am 88,
1061-1077, 1990.
- 30
- U. Parlitz, R. Mettin, S. Luther, I. Akhatov und
M. Voß: Spatiotemporal dynamics of acoutic cavitation bubble clouds.
Phil. Trans. R. Soc. Lond. Submitted, 1998.
- 31
- W. H. Press, W. T. Vetterling, S. A. Teukolsky und B. P.
Flannery: Numerical Recipes in C. Cambridge University Press, 2. Aufl.,
1994.
- 32
- T. L. Saaty: Modern Nonlinear Mathematics. Dover, New York,
1967.
- 33
- S. Thompson: DKLAG6: sourcecode. Website of S. Thompson at the
Department of Mathematics and Statisics, Radford University, Virginia:
http://www.runet.edu/
thompson/.
- 34
- S. Thompson und S. P. Corwin: DKLAG6: solution of systems of
functional differential equations with state dependent delays. Website of S.
Thompson at the Department of Mathematics and Statisics, Radford University,
Virginia: http://www.runet.edu/
thompson/.
- 35
- S. Thompson, S. P. Corwin und D. Sarafyan: DKLAG6: a code
based on continously imbedded sixth order runge-kutta methods for the solution of
state dependent functional differential equations. Website of S. Thompson at the
Department of Mathematics and Statisics, Radford University, Virginia:
http://www.runet.edu/
thompson/.
- 36
- D. J. Tritton: Physical Fluid Dynamics. Oxford Science
Publications, 1988.
- 37
- E. A. Zabolotskaya: Interaction of gas bubbles in a sound field. Akust.
Zh. 30, 618-623, [Sov. Phys. Acoustic, 30, 365, (1984)],
1984.
Stefan Kamphausen 2003-07-17