next up previous contents
Nächste Seite: Danksagung Aufwärts: diplom Vorherige Seite: Erweiterung des Poincaré-Schnitts auf   Inhalt

Literatur

1
Volker Ahlers: Nichtlineare Dynamik und Synchronisation chaotischer Halbleiterlaser mit externen optischen Resonatoren. Diplomarbeit, Drittes Physikalisches Institut, Göttingen, 1998.
2
I. Akhatov, R. Mettin, C. D. Ohl, U. Parlitz und W. Lauterborn: Bjerknes force threshold for stable single bubble sonoluminescence. Phys. Rev. E 55, 3747-3750, 1997.
3
I. Akhatov, U. Parlitz und W. Lauterborn: Pattern formation in acoustic cavitation. J. Acoust. Soc. Am. 96, 3627-3635, 1994.
4
C. T. H. Baker, C. A. H. Paul und D. R. Willé: Issues in the numerical solution of evolutionary delay differential equations. Techn. Ber. 248, University of Manchester/UMIST, Manchester Centre for Computational Mathematics, April 1994.
5
B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman und K. R. Weninger: Defining the unknowns of sonoluminescence. Physics Reports 281, 64-143, 1997.
6
R. E. Bellman, J. D. Buell und R. E. Kalaba: Numerical integration of a differential-difference equation with a decreasing time-lag. Comms. ACM 8, 227-228, 1965.
7
R. E. Bellman, J. D. Buell und R. E. Kalaba: Mathematical experimentation in time-lag modulation. Comms. ACM 9, 752-753, 1966.
8
I. N. Bronstein und K. A. Semendjajw: Taschenbuch der Mathematik. B. G. Teubner Verlagsgesellschaft Stuttgart, Leipzig, 25. Aufl., 1991.
9
L. A. Crum: Bjerknes forces on bubbles in a stationary sound field. J. Acoust. Soc. Am. 57(6), 1363-1370, 1975.
10
A. A. Doinikov und S. T. Zavtrak: On the mututal interaction of two gas bubbles in a sound field. Phys. Fluids 7(8), 1923-1930, 1995.
11
S. Fujikawa und H. Takahira: A theoretical study on the interaction between two spherical bubbles and radiated pressure waves in a liquid. Acustica 61, 188-199, 1986.
12
K. Gopalsamy: Stability and oscillations in delay differential equations of population dynamics. Kluwer, 1992.
13
J. Guckenheimer und P. Holmes: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York, 1986.
14
J. K. Hale und S. M. V. Lunel: Introduction to Functional Differential Equations, Bd. 99 von Applied Mathematical Sciences. Springer-Verlag, New York, Berlin, Heidelberg, 1993.
15
Z. Hong, Z. Feizhou, Y. Jie und W. Yinghai: Nonlinear differential delay equations using the poincare section technique. Phys. Rev. E 54(6), 6925-6928, 1996.
16
A. E. Jackson: Perspectives of Nonlinear Dynamics. Cambridge UP, 1991.
17
V. F. Kazantsev: The motion of gaseous bubbles in a liquid under the influence of Bjerknes forces arising in an acoustic field. Sov. Phys. Doklady 4(1), 1250-1253, [Original: Doklady Akad. Nauk SSSR, 129, 64-67, (1959)], 1960.
18
J. B. Keller und M. Miksis: Bubble oscillations of large amplitude. J. Acoust. Soc. Am 68(2), 628-633, 1980.
19
W. Lauterborn: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am 59, 283-293, 1976.
20
W. Lauterborn: Akustische Kavitation: ein typisches, nichtlineares dynamisches System. Acustica 75, 145-153, 1991.
21
W. Lauterborn und R. Mettin: Nonlinear bubble dynamics. In: Proceedings of the NATO Advanced Study Institute, Leavenworth (WA), herausgegeben von L. A. Crum, S. 18-29, Kluwer Academic Publishers, Dordrecht, 1997.
22
T. G. Leighton: The Acoustic Bubble. Academic Press, London, 1994.
23
G. C. Lichtenberg: Novi Commentari Societatis Regiae Scientiarum Gottingensis, Kap. De nova methodo naturam ac motum fluidi electrici investigandi, S. 168-180. Commentationes physicae et mathematicae classis, Joann. Christian Dieterich, Gottingae, VIII Aufl., 1778.
24
J. Losson, M. C. Mackey und A. Longtin: Solution multistability in first-order nonlinear differential delay equations. Chaos 3(2), 167-176, 1993.
25
R. Mettin, I. Akhatov, U. Parlitz, C. D. Ohl und W. Lauterborn: Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys. Rev. E 56, 2924, 1997.
26
M. Minnaert: On musical air-bubbles and the sound of running water. Phil. Mag. 16, 235-248, 1933.
27
H. J. Oberle und H. J. Pesch: Numerical treatment of delay differential equations by Hermite interpolation. Numer. Math. 37, 235-255, 1981.
28
H. N. Oguz und A. Prosperetti: A generalization of the impulse and virial theorems with an application to bubble oscillations. J. Fliud. Mech. 218, 143-162, 1990.
29
U. Parlitz, V. Englisch, C. Scheffczyk und W. Lauterborn: Bifurcation structure of bubble oscillations. J. Acoust. Soc. Am 88, 1061-1077, 1990.
30
U. Parlitz, R. Mettin, S. Luther, I. Akhatov und M. Voß: Spatiotemporal dynamics of acoutic cavitation bubble clouds. Phil. Trans. R. Soc. Lond. Submitted, 1998.
31
W. H. Press, W. T. Vetterling, S. A. Teukolsky und B. P. Flannery: Numerical Recipes in C. Cambridge University Press, 2. Aufl., 1994.
32
T. L. Saaty: Modern Nonlinear Mathematics. Dover, New York, 1967.
33
S. Thompson: DKLAG6: sourcecode. Website of S. Thompson at the Department of Mathematics and Statisics, Radford University, Virginia: http://www.runet.edu/$\sim$thompson/.
34
S. Thompson und S. P. Corwin: DKLAG6: solution of systems of functional differential equations with state dependent delays. Website of S. Thompson at the Department of Mathematics and Statisics, Radford University, Virginia: http://www.runet.edu/$\sim$thompson/.
35
S. Thompson, S. P. Corwin und D. Sarafyan: DKLAG6: a code based on continously imbedded sixth order runge-kutta methods for the solution of state dependent functional differential equations. Website of S. Thompson at the Department of Mathematics and Statisics, Radford University, Virginia: http://www.runet.edu/$\sim$thompson/.
36
D. J. Tritton: Physical Fluid Dynamics. Oxford Science Publications, 1988.
37
E. A. Zabolotskaya: Interaction of gas bubbles in a sound field. Akust. Zh. 30, 618-623, [Sov. Phys. Acoustic, 30, 365, (1984)], 1984.



Stefan Kamphausen 2003-07-17